
Maximal Information Coefficient (MIC – search for relationships n a dataset)

Time series analysis and display

Visualizing Categorical data 



Multivariate LABELED data visualization/analysis

1. Plot all the features (variables) to identify nonsenses (remove them). 

2. Normalized the data (between 0-1 or to have zero mean and unitary std)

3. hypothesis testing for identifying “important” (discriminative) features

o Continuous variables: 

• t-test for continuous variables (but you need to assume that the underlying distribution is normal)

• Non-parametric tests if you can’t make any assumption (e.g. Mann-Whitney, Kruskal-Wallis)

o Categorical data:

o Fisher exact test ( if you get few points)

o Chi Square (χ2) test otherwise 

4. For each variable, and for each class, separate the point according to their labels and visualize the feature 

density plots (histograms) and or the boxplots (with notches) of each class. 

train decision trees on each feature to effectively assess the variable discrimination capability.



5. Compute pairwise correlations between:

o each features and the data labels: features that are highly correlated with the label 

(should also have a low p-value) are the most discriminative/should have boxplots with 

NOT OVERLAPPED notches or different (not overlapping) per class histograms.

o each features and each other feature: if two features are highly correlated, they are 

redundant! Remove the one with the highest p-value/highest accuracy/highest correlation 

with the labels

6. TSNE for reducing the data dimensionality  and projecting the data in an (unrolled space) where 

points in the same class are near. Visualize the 2D data by using scatter plots (of the first 2/3 

dimensions computed by TSNE) 



Linear correlations with Pearson, Spearman, 

Non linear correlations with MIC or statistics of 

MINE family

4. Compute pairwise correlations



Maximal Information Coefficient

Maximal Information-based Non-parametric Exploration



Generality: 

with sufficient sample size the statistic should capture a wide range of interesting associations, not limited to 

specific function types (such as linear, exponential, or periodic), or even to all functional relationships. 

Equitability: 

the statistic should give similar scores to equally noisy relationships of different types. 



Equitability: need of giving similar scores to functional relationships with similar R2 values (given sufficient sample size)

coefficient of determination, denoted R2 or r2 and pronounced "R squared", is the proportion of the variance in the dependent variable that is

predictable from the independent variable(s).

In 2D Suppose you have a dataset with n points y1,..., yi , …, yn (the dataset is the vector y = [y1,..., yn]’), and you fit it with a regression (predicted, fitted)

model f1,...,fn (known as fi, or sometimes ŷi, s a vector f).

R2 is a statistic that will give some information about the goodness of fit of the model f to y . In regression, the R2 coefficient of determination is a

statistical measure of how well the regression predictions approximate the real data points. An R2 of 1 indicates that the regression predictions perfectly

fit the data.

Generability: not only do relationships take many functional forms, but many important relationships—for example, a 

superposition of functions (composition of functions) —are not well modeled by a unique function.



The better the linear regression (on the right) f its the data in comparison to the

simple average (on the left graph), the c loser the value o R2 is to 1. The areas of

the blue squares represent the squared residuals w ith respect to the linear

regression. The areas of the red squares represent the squared res iduals w ith

respect to the average value.

Coefficient of determination



if a relationship exists between two variables, then a grid can be drawn on the 

scatterplot of the two variables that partitions the data to encapsulate that 

relationship.

Therefore if we try all the grids and find a well-fitting grid, the relationship may 

be estimated in terms of the grid “coverage”.

The Idea at the base of MIC:



Thus, to calculate the MIC of a set of two-variable data set D:

explore all grids (x, y) Footnote1 up to a maximal grid size B(n), where B(n) depends on the sample 

sizeFootnote2.

From D compute the characteristic matrix  M(D)x,y with B(n)*B(n) components as follows.

Given r < B(n) and c< B(n):

- Define all the possible grids gr, c= grid(r, c) that split the image into r rows and c columns. 

- For each of such grids ĝr, c  compute its “coverage of the dataset” as the mutual information 

between the grid and the dataset. mi(ĝx,y , D)

- Compute the maximum of the mutual informations on grids r, c  mx,y = max(mi(ĝx,y , D))

- M(D)x,y=

Footnote1 an (x, y) grid splits the plot into x rows and y columns (x*y rectangles)

Footnote2 The finest grid (xmax, ymax) has xmax, ymax < B(n) = n0.6 = (n3) 0.2

Footnote3 normalization factor = log(min(x,y))

mx,y

log(min(x,y))
Footnote3



MIC(D) = max x,y<B(n) { M(D)x,y}

MAS(D), MEV(D), MCN(D)

Before briefly looking at them, how is mi(ĝx,y , D) computed?

Once M(D)x,y has been computed you may compute the MINE statistics (all such that 0 ≤ MINE ≤ 1)



Mutual Information Coefficient



Mutual Information Coefficient

Number of points that 
fall inside the box (x,y) 
divided by the area of 
the box (x,y)



Mutual Information Coefficient

Number of points that 
fall inside the boxes in 
row x divided by the 
area of the boxes in row 
x



Mutual Information Coefficient

Number of points that 
fall inside the boxes in 
column y divided by the 
area of the boxes in 
column y



Mutual Information Coefficient

Expected value 
of PXY



Mutual Information interpretation through entropy:

entropy is a measure of  “uncertainty” – the higher the entropy, 

the more uncertain one is about a random variable.

The conditional entropy is the average 

uncertainty about X after observing a 

second random variable Y



Mutual information is the reduction in uncertainty about variable X after observing Y



MIC(D) = max x,y<B(n) { M(D)x,y} 0 ≤ MIC(D) ≤ 1

Once M(D)x,y has been computed you may compute the MINE statistics

Existing relationship

From MIC to MINE statistics Family

Maximal Information-based Nonparametric Exploration



MIC(D) = max x,y<B(n) { M(D)x,y} 0 ≤ MIC(D) ≤ 1

MAS(D) = max x,y<B(n) { | M(D)x,y - M(D)y,x | } Maximum Asymmetry Score, 0 ≤ MAS ≤ MIC ≤ 1
MAS checks how not symmetric is M(D)y,x

Since M(D)y,x is symmetric for monotonic relationships, 

→ MAS is higher for highly non monotonic relationships

Non-monotonicity of the relationship

Existing relationship



MIC(D) = max x,y<B(n) { M(D)x,y}

MAS(D) = max x,y<B(n) { | M(D)x,y - M(D)y,x | } 

MEV(D) = max x,y<B(n) { M(D)x,y}: x=2, y=2}

Once M(D)x,y has been computed you may compute the MINE statistics (all such that 0 ≤ MINE ≤ 1)

Maximum Edge Value, 0 ≤ MEV ≤ MIC ≤ 1
Measures the degree to which the dataset appears to be sampled from a continuous 

function.

If D passes the “vertical/horizontal” line tests (each vertical or horizontal lines contain 

only one point of D), then the maximal grids are those for x = 2, y=2. 

→ MEV is higher for Datasets distributed along continuous functions. 

Closeness of the relationship to a function 

Non-monotonicity of the relationship

Existing relationship



MIC(D) = max x,y<B(n) { M(D)x,y}

MAS(D) = max x,y<B(n) { | M(D)x,y - M(D)y,x | } 

MEV(D) = max x,y<B(n) { M(D)x,y}: x=2, y=2}

MCN(D, ε) = min x,y<B(n) {log(x,y): M(D)x,y ≥ (1-ε) MIC(D)

Once M(D)x,y has been computed you may compute the MINE statistics (all such that 0 ≤ MINE ≤ 1)

Minimum Cell Number,  MIC ≤MAS ≤ MIC ≤ 1
Measures the scale of the grids which allow approximating the MIC score 

(ε controls the level of noise: use higher values of ε for noisy datasets). 

The highest x and y (the smallest the grid boxes), the highest the 

complexity of the relationship.

→ MCN is higher for complex relationships.

Complexity of the relationship

Closeness of the relationship to a function 

Non-monotonicity of the relationship

Existing relationship



MIC(D) = max x,y<B(n) { M(D)x,y}

MAS(D) = max x,y<B(n) { | M(D)x,y - M(D)y,x | } 

MEV(D) = max x,y<B(n) { M(D)x,y}: x=2, y=2}

MCN(D, ε) = min x,y<B(n) {log(x,y): M(D)x,y ≥ (1-ε) MIC(D)

TIC(D) = Σx,y<B(n) { M(D)x,y}

Once M(D)x,y has been computed you may compute the MINE statistics (all such that 0 ≤ MINE ≤ 1)

Complexity of the relationship

Closeness of the relationship to a function 

Non-monotonicity of the relationship

Existing relationship

Existence of a relationship with power against independence

Total Information Coefficient, MIC ≤ 1 ≤TIC.

While MIC is equitable,  TIC achieves power against independence.



Authors suggest to combine  MIC and TIC to achieve 

- power against independence (by filtering results using TIC) 

- equitability (by using MIC on the remaining variable pairs) 

when exploring a data set with a large number of nontrivial relationships.











Once you have computed the characteristics matrix M(D)x,y



PAUSA??



COMPARING DISTRIBUTION TRENDS…

Sometimes you need to change your mindset
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Is the rate of change 
similar?

Suppose the rate of change for each of the two 
functions is constant



What about using logarithmic scales?



y2(t+1) = y2(t) + y2(t)*rate2

y1(t+1) = y1(t) + y1(t)*rate1

rate1  <= rate2
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y1(0) = v Log (y1(0)) = Log( v )

y1(1) = v+v* rate1 Log(y1(1)) = Log(v (1+rate1)) = Log( v )+ Log(1+rate1)

y1(2) = y1(1) + y1(1)*rate1 Log(y1(2)) = Log(y1(1) )+ Log(1+rate1) = Log(v) + 2* Log(1+rate1) 

y1(3) = y1(2) + y1(2)*rate1 Log(y1(3)) = Log(y1(2) )+ Log(1+rate1) = Log(v) + 3* Log(1+rate1) 

…

Log(y1(t+1)) = Log( y1(t) + y1(t)*rate1 ) = Log( y1(t) (1+rate1 ) ) = Log(y1(t) ) + Log(1+rate2)  = Log( v ) + t*Log(1+rate1)

Log(y1(0) ) + t*Log(1+rate1)

Since rate1 is constant and Log(y1(0)) is also constant we have a line with m = 

Log(1+rate1) and intercept Log(y1(0)) 



When using logarithmic 

scale it may be 

something like that



With logarithmic scale…





Those where Time series



If you look at the whole time-series, to search for differences among different intervals, 

short-time memory makes you forget when you slide to the next interval 



Show them alltoghether in the same plot to allow a straight visual comparison



An EEG time series

Dataset of EEG signals of Open/Close eyes

All data is from one continuous EEG measurement with the Emotiv EEG Neuroheadset. 
The duration of the measurement was 117 seconds. 
The eye state was detected via a camera during the EEG measurement and added later 
manually to the file after analysing the video frames. 
'1' indicates the eye-closed and '0' the eye-open state. 

All values are in chronological order with the first measured value at the top of 
the data.

INFO AT: http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State#
File with info

http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State


For each time step of measurement:

timestep of measurement, 14 different activations, LABEL (0 = open eye/1= close eye) 

First step of analysis:

line plot of all the 14 activations in time (regardless of the label)

box-plot of all the 14 activations in time (regardless of the label)

First analysis with MATLAB
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LOG contracts highest values and increases the scale of small values

LOG shows trends



LOG contracts highest values and let trends appear 
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Still highest values hide details: diminish the value of outliers



For each activation (feature): 

- change outlier values: 

feature(outliers>max(feature(notOulier))) = max(feature(notOulier)) + range(feature(notOutlier))*0.05

feature(outliers<min(feature(notOulier))) = min(feature(notOulier)) - range(feature(notOutlier))*0.05

- Translate feature to zero: feature = feature - min(feature)

Plotting all the (LOG!!!)  feature (blue = open/red = closed)



Plotting all the (LOG!!!)  feature without distinguishing open and close labels
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Cycle Plots allow looking at the changing trend in all the periods

Open a                                           Open b                                      Close a                         Close b



Radar Plots

Eye starts to be close

Eye is beginning to be open

Eye starts to be open

Eye is almost closing
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All the Ti
cl divided into 

15 blocks



All the Ti
op divided into 

15 blocks



Alternatively, you may use heatmaps



Visualization of categorical data (essentially proportions)

Approved credit-card payments





A pareto chart might be useful

Cumulative distributions



A pareto chart might be useful

Cumulative distributions

Aggregate classes with few proportions



But don’t aggregate 

classes that are 

important for your study



Parallel sets show the categorical trends 



Parallel sets allow visualizing multivariate categorical/ordinal data

Otherwise you may use 

Glyphs: “a graphical object designed to convey multiple data values” 
Information Visualization: Perception for Design, Colin Ware

MULTIVARIATE CATEGORICAL DATA



Visual Attribute Variable

Shape of head            

+ head width

Job*

+ position in the job**

Marital Shape of Mouth

Color Housing***

Color of hat Education****

Thickness of body deposit balance

Position of the legs mean monthly expenses

Position of arm Expenses of this month

* Jobs clustered to diminish the number of classes
** e.g. CEO, chief administration, manager, employee, intern…
*** Housing could have more classes (private, private with bank loan, 
under rent, no)
****Education has a sort of ordering 



Visual Attribute Variable

Shape of head            

+ head width

Job*

+ position in the job**

Marital Shape of Mouth

Color Housing***

Color of hat Education****

Thickness of body deposit balance

Position of the legs mean monthly expenses

Position of arm Expenses of this month

* Jobs clustered to diminish the number of classes
** e.g. CEO, chief administration, manager, employee, intern…
*** Housing could have more classes (private, private with bank loan, 
under rent, no)
****Education has a sort of ordering 

The strongest attribute (enclosure for the LABEL, if any)



Chernoff faces (Herman Chernoff 1972)

Why faces + expression?

Because we are used to recognize people and 

interpret their facial expressions 



Otherwise, as it they were plotted in a radar plot…

Stars

whiskers



Or categorical heatmaps

Green = colors over the average (the lighter the higher)

Black = values near the average of the class

Reds = color below average (the ligther the lower)



Color Blind?

Black for average is a bad 
perceptual association (use grey)

Green = colors over the average

(the more saturated the higher)

grey = values near the average of the class

Reds = color below average

(the more saturated the lower)



https://www.perceptualedge.com/

Stephen Few

https://www.perceptualedge.com/


https://www.practicalreporting.com/about-nick-desbarats

Nick Debarats

How To Not Accidentally Create Data Visualizations That Lie

https://www.practicalreporting.com/about-nick-desbarats
https://www.youtube.com/watch?v=rxkUis3Ey1I
https://www.youtube.com/watch?v=rxkUis3Ey1I


A.I. Experiments: Visualizing High-Dimensional Space (with TSNE)

https://www.youtube.com/watch?v=wvsE8jm1GzE
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