UNIVERSITA DEGLI STUDI DI MILANO

Maximal Information Coefficient (MIC — search for relationships n a dataset)
Time series analysis and display

Visualizing Categorical data
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Multivariate LABELED data visualization/analysis

1. Plot all the features (variables) to identify nonsenses (remove them).

2. Normalized the data (between O-1 or to have zero mean and unitary std)

3. hypothesis testing for identifying “important” (discriminative) features
o Continuous variables:
* t-test for continuous variables (but you need to assume that the underlying distribution is normal)
* Non-parametric tests if you can’t make any assumption (e.g. Mann-Whitney, Kruskal-Wallis)
o Categorical data:
o Fisher exacttest ( if you get few points)

o Chi Square (y?) test otherwise

4. For each variable, and for each class, separate the point according to their labels and visualize the feature

density plots (histograms) and or the boxplots (with notches) of each class.
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train decision trees on each feature to effectively assess the variable discrimination capability.




5. Compute pairwise correlations between:
o each features and the data labels: features that are highly correlated with the label
(should also have a low p-value) are the most discriminative/should have boxplots with

NOT OVERLAPPED notches or different (not overlapping) per class histograms.

o each features and each other feature: if two features are highly correlated, they are
redundant! Remove the one with the highest p-value/highest accuracy/highest correlation
with the labels

6. TSNE for reducing the data dimensionality and projecting the data in an (unrolled space) where
points in the same class are near. Visualize the 2D data by using scatter plots (of the first 2/3

dimensions computed by TSNE)
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4. Compute pairwise correlations

Linear correlations with Pearson, Spearman,

Non linear correlations with MIC or statistics of

MINE family
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Maximal Information Coefficient

Maximal Information-based Non-parametric Exploration
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Generality:
with sufficient sample size the statistic should capture a wide range of interesting associations, not limited to

specific function types (such as linear, exponential, or periodic), or even to all functional relationships.

Equitability:

the statistic should give similar scores to equally noisy relationships of different types.
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Generability: not only do relationships take many functional forms, but many important relationships—for example, a

superposition of functions (composition of functions) —are not well modeled by a unique function.

Equitability: need of giving similar scores to functional relationships with similar R2 values (given sufficient sample size)

coefficient of determination, denoted R? or r? and pronounced "R squared”, is the proportion of the variance in the dependent variable that is
predictable from the independent variable(s).

In 2D Suppose you have a dataset with n points y; ..., ¥i, ..., Y, (the dataset is the vector y =[y;,..., ¥n]’), and you fit it with a regression (predicted, fitted)
model f,,...,f, (known as f;, or sometimes ¥;, s a vector f).

R? is a statistic that will give some information about the goodness of fit of the model f to y . In regression, the R? coefficient of determination is a
statistical measure of how well the regression predictions approximate the real data points. An R? of 1 indicates that the regression predictions perfectly

fit the data.
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Coefficient of determination

If y is the mean of the observed data:

I A
y—;;%

then the variability of the data set can be measured using three sums of squares formulas:

e The total sum of squares (proportional to the variance of the data):

Sstot - Z(yz - 5)2,

e The regression sum of squares, also called the explained sum of squares:

SSreg - Z(fz - 5)21

e The sum of squares of residuals, also called the residual sum of squares:
Z 2
SSrcs — (yi - fa) = Z 6?
i i

The most general definition of the coefficient of determination is

SSres
SSLOL

R’ =1

Ay

S5
S Stot

The better the linear regression (on the right) fits the data in comparison to the

R’ =1

simple average (on the left graph), the closer the value o R2 is to 1. The areas of
the blue squares represent the squared residuals with respect to the linear
regression. The areas of the red squares represent the squared residuals with

respect to the average value.
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The Idea at the base of MIC:
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2x3

if a relationship exists between two variables, then a grid can be drawn on the

scatterplot of the two variables that partitions the data to encapsulate that

XXy

relationship.

Therefore if we try all the grids and find a well-fitting grid, the relationship may

be estimated in terms of the grid “coverage”.
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Thus, to calculate the MIC of a set of two-variable data set D:

explore all grids (X, y) et up to a maximal grid size B(n), where B(n) depends on the sample

SizeFootnOte2

From D compute the characteristic matrix M(D)y , with B(n)*B(n) components as follows.

Given r <B(n) and c< B(n):

Define all the possible grids g, .= grid(r, c) that split the image into r rows and ¢ columns.

- For each of such grids g, . compute its “coverage of the dataset” as the mutual information
between the grid and the dataset. mi(g, ,, D)

- Compute the maximum of the mutual informations on grids r, ¢ m, , = max(mi(gy, D))

mX,y
- I\/I(D)x,y:

Footnote3

log(min(x,y))

Feotrotel an (x, y) grid splits the plot into xrows and y columns (x*y rectangles)
Foonote? The finest grid (Xnaxs Ymax) NAS Xnaxs Ymax < B(N) =n%¢ = (n?) 02

Feotnote3 normalization factor = log(min(xy))

Normalized Score
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Once M(D),, has been computed you may compute the MINE statistics (all such that 0 < MINE < 1)

MIC(D) = max yy<gm { M(D)yy}

MAS(D), MEV(D), MCN(D)

Before briefly looking at them, how is mi(g, , , D) computed?
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Mutual Information Coefficient
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Mutual Information Coefficient

Pﬂ(may)

I(X;Y) = Z Pxy(z, y)|log Py (2)Py(y)

Number of points that
fall inside the box (x,y)
divided by the area of
the box (x,y)
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Mutual Information Coefficient

I(X;Y) = Z Pxy(z,y) log PI; Z )(;;g) —

Number of points that
fall inside the boxes In
row X divided by the
area of the boxes in row
X




Mutual Information Coefficient

. _ PH(:E: y) L PXY
I(X: Y) — %Pﬂ(ﬂ:a y) l()g Px(m)Py(y) — Eﬂwlog

Number of points that
fall inside the boxes In
column y divided by the
area of the boxes iIn
column y
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Mutual Information Coefficient

I(X;Y) = Z Py (z,y) log 5222 =| e Jog

Expected value
of Py
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Mutual Information interpretation through entropy:

H(X) = — Z Px(z)log Px(z) = —Ep log Px entropy is a measure of |“uncertainty” — the higher the entropy,
z the more uncertain one is about a random variable.

The conditional entropy is the average

H(X|Y)= Z Py(y)|— Z Pxy(z]y) log (PX|Y(€L‘\?J)) — Epy[_EPm log Pxy <+— uncertainty about X after observing a
Y * second random variable Y

+ It should be maximal when Py () is uniform, and in this case it should increase with the number of possible values Xl can take;
» [t should remain the same if we reorder the probabilities assigned to different values of X ;

» The uncertainty about two independent random variables should be the sum of the uncertainties about each of them.
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I(X;Y) = HX) — HX|Y).

Mutual information is the reduction in uncertainty about variable X after observing Y




Once M(D),, has been computed you may compute the MINE statistics

Existing relationship

MIC(D) = max yyegn { M(D)xy} 0 <MIC(D) <1

From MIC to MINE statistics Family

Maximal Information-based Nonparametric Exploration
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Existing relationship

MIC(D) = max yyegn { M(D)xy} 0 <MIC(D) <1

Non-monotonicity of the relationship

MAS(D) = max yy<gm) {| M(D)yxy - M(D)yx | } Maximum Asymmetry Score, 0 < MAS < MIC < 1
MAS checks how not symmetric is M(D)y x
Since M(D)y,x is symmetric for monotonic relationships,

— MAS is higher for highly non monotonic relationships
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Once M(D),, has been computed you may compute the MINE statistics (all such that 0 < MINE < 1)

MIC(D) = max yy<gmn) { M(D)yy} Existing relationship

MAS(D) = max yy<gm 1| M(D)yxy - M(D)yx | } Non-monotonicity of the relationship

Closeness of the relationship to a function

MEV(D) = max ,ygm { M(D)y}: x=2, y=2} Maximum Edge \alue, 0 < MEV < MIC< 1
Measures the degree to which the dataset appears to be sampled from a continuous
function.
If D passes the “vertical/horizontal” line tests (each vertical or horizontal lines contain

only one point of D), then the maximal grids are those for x = 2, y=2.

©
Z
=
E
a
=
=}
)
v
=
g
[£3]
(m]
-
=
W
=4
=
=
Z
=}

— MEV is higher for Datasets distributed along continuous functions.
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Once M(D),, has been computed you may compute the MINE statistics (all such that 0 < MINE < 1)

MIC(D) = MaX xyem £ M(D)y} Existing relationship
MAS(D) = max yy<gm { | M(D)y, - M(D)yx | } Non-monotonicity of the relationship
MEV(D) = max ,y<gm { M(D)x,}: X=2, y=2} Closeness of the relationship to a function

Complexity of the relationship

MCN(D, &) =min g {log(xy): M(D)y, 2 (1-¢) MIC(D) Minimum Cell Number, MIC <MAS <MIC <1
Measures the scale of the grids which allow approximating the MIC score
(e controls the level of noise: use higher values of € for noisy datasets).
The highest x and y (the smallest the grid boxes), the highest the
complexity of the relationship.

— MCN is higher for complex relationships.
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Once M(D),, has been computed you may compute the MINE statistics (all such that 0 < MINE < 1)

MIC(D) = maX yy<gmn) { M(D)yy} Existing relationship

MAS(D) = max yy<gm { | M(D)yy - M(D)y« | } Non-monotonicity of the relationship
MEV(D) = max yy<gm { M(D)y,}: x=2, y=2} Closeness of the relationship to a function
MCN(D, €) = min 4y« {109(Xy): M(D),, 2 (1-¢) MIC(D) Complexity of the relationship

Existence of a relationship with power against independence

TIC(D) = zx,y<B(n) { M(D)x,y} Total Information Coefficient, MIC <1 <TIC.

While MIC is equitable, TI1C achieves power against independence.
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Authors suggest to combine MIC and TIC to achieve
- power against independence (by filtering results using TIC)

- equitability (by using MIC on the remaining variable pairs)

when exploring a data set with a large number of nontrivial relationships.
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MAS MEV MCN

MIC

Data

0.00 1.00 2.00

1.00

0.74 1.00 3.00

1.00

0.89 1.00 4.00

1.00

0.69 1.00 2.56

1.00

0.70 6.91
0.32 6.87

0.16
0.03

0.79
0.71

0.19 0.22 6.98

0.46
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Fig. 3. Visualizations of the characteristic matrices of common relation-  axis bins (columns), and the z axis represents the normalized score of the
ships. (A to F) Surfaces representing the characteristic matrices of several  best-performing grid with those dimensions. The inset plots show the rela-
common relationship types. For each surface, the x axis represents num-

tionships used to generate each surface. For surfaces of additional relation-
ber of vertical axis bins (rows), the y axis represents number of horizontal  ships, see fig. 57.
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CorGC
Mutual Information Maximal
Relationship Type ~ MIC Pearson Spearman  “kpg)  (Kraskov) c.(.P""C'p")correlallon

Random 0.18 -0.02 -0.02 0.01 0.03 0.19 0.01
Linear
Cubic

Exponential

Sinusoidal
(Fourier frequency}

Categorical
Periodic/Linear
Parabolic
ron PRI )

Sinusoidal
(valying froquency)

G Maximal Information Coefficient (MIC)
0.80 0.65 0.50 0.35

Relationship Type Added Noise ———>

Two Lines L

Line and Parabola

"

e

i

L

Ellipse

Sinusoid
(Mixture of two signals)

Non-coexistence L

Fig. 2. Comparison of MIC to existing methods (A) Scores given to various
noiseless functional relationships by several different statistics (8, 12, 14, 19).
Maximal scores in each column are accentuated. (B to F) The MIC, Spearman
correlation coefficient, mutual information (Kraskov et al. estimator), maximal
correlation (estimated using ACE), and the principal curve-based CorGC de-
pendence measure, respectively, of 27 different functional relationships with
independent uniform vertical noise added, as the R? value of the data relative to
the noiseless function varies. Each shape and color corresponds to a different
combination of function type and sample size. In each plot, pairs of thumbnails
show relationships that received identical scores; for data exploration, we would
like these pairs to have similar noise levels. For a list of the functions and sample
sizes in these graphs as well as versions with other statistics, sample sizes, and
noise models, see figs. S3 and 54. (G) Performance of MIC on associations not
well modeled by a function, as noise level varies. For the performance of other
statistics, see figs. S5 and S6.
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Once you have computed the characteristics matrix M(D),,

e Non-monotonicity

The Maximum Asymmetry Score (MAS) is defined by
MAS(D) = max |M(D),., — M(D), .|

ry<B

and measures deviation from monotonicity. MAS is never greater than MIC. For an illustration of the
intuition behind MAS, see Figure S2.

e Closeness to being a function

The Maximum Edge Value (MEV) is defined by
MEV (D) = max{M (D), ,:x=2ory =2}

ry<B
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COMPARING DISTRIBUTION TRENDS...

Sometimes you need to change your mindset
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Suppose the rate of change for each of the two
functions Is constant

I I I I I I I I I

Is the rate of change
similar?
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What about using logarithmic scales?
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y,(t+1) =y (t) + y,(t)*rate,

y,(t+1) = y,(t) + y,(t)*rate,

mte1 <= mte2
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y,(0)=v Log (y,(0)) = Log( v )

y,(1) = v+v* rate, Log(y,(1)) = Log(v (1+rate,)) = Log( v )+ Log(1+rate, )

y:(2) = y,(1) + y,(1)'rate, Log(y,(2)) = Log(y,(1) )+ Log(1+rate,) = Log(v) + 2* Log(1+rate,)
y.(3) = y,(2) + y,(2)"rate, Log(y,(3)) = Log(y,(2) )+ Log(1+rate,) = Log(v) + 3* Log(1+rate,)

Log(y,(t+1)) = Log( y,(t) + y,(t)"rate, ) = Log( y,(t) (1+rate, ) ) = Log(y,(t) ) + Log(1+rate,) =Log(v) + t*Log(1+rate.)

Log(y,(0) ) + t*Log(1+rate, )
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Since rate, Is constant and Log(y;(0)) is also constant we have a line with m =

Log(1+rate,) and intercept Log(y,(0))
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When using logarithmic
scale it may be

something like that

v
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With logarithmic scale...
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Use percentages to compare rates of change.

Change from
previous month
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Those where Time series
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2003 2004 2005

If you look at the whole time-series, to search for differences among different intervals,

short-time memory makes you forget when you slide to the next interval
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Show them alltoghether inthe same plot to allow a straight visual comparison
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An EEG time series

Dataset of EEG signals of Open/Close evyes

All data 1s from one continuous EEG measurement with the Emotiv EEG Neuroheadset.
The duration of the measurement was 117 seconds.

The eye state was detected via a camera during the EEG measurement and added later
manually to the file after analysing the video frames.

"1" indicates the eye-closed and "0" the eye-open state.

All values are i1n chronological order with the first measured value at the top of

the data.

INFO AT: http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State#
File with i1nfo
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http://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

For each time step of measurement:

timestep of measurement, 14 different activations, LABEL (0 = open eye/1=close eye)

First step of analysis:
line plot of all the 14 activations in time (regardless of the label)

box-plot of all the 14 activations in time (regardless of the label)
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First analysis with MATLAB
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LOG contracts highest values and increases the scale of small values

LOG shows trends
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LOG contracts highest values and let trends appear —
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Still highest values hide details: diminish the value of outliers
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For each activation (feature):

- change outlier values:

feature(outliers>max(feature(notOulier))) = max(feature(notOulier)) + range(feature(notOutlier))*0.05
min(feature(notOulier)) - range(feature(notOutlier))*0.05

feature(outliers<min(feature(notOulier)))

- Translate feature to zero: feature = feature - min(feature)

(8] 5000 10000 15000

Plotting all the (LOG!!) feature (blue = open/red = closed)
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Plotting all the (LOG!!!) feature without distinguishing open and close labels
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Cycle Plots allow looking at the changing trend in all the periods
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“llllllu Radar Plots
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Visualization of categorical data (essentially proportions)

Approved credit-card payments
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A pareto chart might be useful
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A pareto chart might be useful
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‘m“ Parallel sets show the categorical trends
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MULTIVARIATE CATEGORICAL DATA

Parallel sets allow visualizing multivariate categorical/ordinal data

Otherwise you may use

Glyphs: “a graphical object designed to convey multiple data values”

Information Visualization: Perceptionfor Design, Colin Ware
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Visual Attribute Variable
Shape of head Job*
A + head width + position in the job**
N\ N — Marital Shape of Mouth
Color Housing***
Color of hat Education****
Thickness of body deposit balance
Position of the legs mean monthly expenses
Position of arm Expenses of this month

* Jobs clustered to diminish the number of classes

** @.9. CEO, chief administration, manager, employee, intern...

*** Housing could have more classes (private, private with bank loan,
under rent, no)

***Education has a sort of ordering
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The strongest attribute (enclosure for the LABEL, if any)

Visual Attribute Variable
Shape of head Job*
A + head width + position in the job**
N\ N Marital Shape of Mouth
Color Housing***
Color of hat Education****
Thickness of body deposit balance
Position of the legs mean monthly expenses
Position of arm Expenses of this month

* Jobs clustered to diminish the number of classes

** @.9. CEO, chief administration, manager, employee, intern...

*** Housing could have more classes (private, private with bank loan,
under rent, no)

***Education has a sort of ordering
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Chernoff faces (Herman Chernoff 1972)
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Otherwise, as it they were plotted in a radar plot...

whiskers

Stars
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Or categorical heatmaps

YALOO3W
YALO10C
YALO16W
YALO26C
YALO31C
YALO36C

YALO38W
YALO42W
YAL048C
YAL0S4C
YALOS6W
YAL063C
YAROO2W
YARO15W
YAROZBW
YARD40C
YARO52C
YAROGBW
YBLO01C
YBLOOSW-B
YBLO1IW
YBLOT7C
YBLO023C
YBLOZ2SW
YBLO35C
YBLO4TW
YBLO4C
YBLOS3W
YBLOSIW
YBLOESW
YBLO71C
YBLOT7W
YBL083C
YBLO8SW
YBLOSSW
YBL101C
YBL105C
YBL111C
YBROO1C
YBROO04C
YBRO1OW
YEBR014C
YBRO20W
YBRO26C
YBRO32ZW
YBRO38W
YBRO44C
YBROS50C
YBROS6W

Price Duration Revenue Unis Sold Marketing$ Profit

Green = colors over the average (the lighter the higher) Q
Black = values near the average of the class

Reds = color below average (the ligther the lower)



Color Blind? Green = colors over the average t
(the more saturated the higher)

grey = values near the average of the class

Reds = color below average
(the more saturated the lower) l

Black for average is a bad
perceptual association (use grey)
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Stephen Few

Numbers

Designing Tables and Graphs to Enlighten

STEPHEN FEW

DASHBOARD

The Effective Visual Communication of Data

O'REILLY"

https://www.perceptualedge.com/



https://www.perceptualedge.com/

Nick Debarats

https://www.practicalreporting.com/about-nick-desbarats

How To Not Accidentally Create Data Visualizations That Lie
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https://www.practicalreporting.com/about-nick-desbarats
https://www.youtube.com/watch?v=rxkUis3Ey1I
https://www.youtube.com/watch?v=rxkUis3Ey1I

A.l. Experiments: Visualizing High-Dimensional Space (with TSNE)
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https://www.youtube.com/watch?v=wvsE8jm1GzE
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